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Introduction
Pancreatic cancer (PC) is one of the most malignant types of tu-
mors and is the seventh leading cause of cancer-related deaths 
worldwide.1 Moreover, pancreatic ductal adenocarcinoma (PDA) 
accounts for more than 90% of all pancreatic cancer cases. In con-
trast to the steady increase in survival for most cancers, advances 
have been slow for PC, for which the overall five-year relative 
survival is currently 6% (2–9%).2 The low survival rate is partly 
because more than half of the cases are diagnosed at an advanced 
stage. Patients with limited lesions of the pancreas have a five-year 
survival rate of 29.3%, yet the rate for advanced patients is only 
2.6%.2 Hence, an effective screening method for its early detection 

is still lacking. Furthermore, the modified chemoradiation treat-
ments have a limited impact on the course of disease despite some 
advances.3,4

It has been well established that pancreatic carcinogenesis un-
dergoes an extremely long course during which numerous genetic 
events accumulate within the pancreatic cells with a stemness phe-
notype. A list of environmental factors has also been identified to 
predispose an individual to pancreatic cancer, including smoking, 
alcohol consumption, chronic inflammation, etc. Compared with 
the first two factors which only confer a low risk (relative risk 
≈2),5,6 chronic inflammation shows a stronger association with 
PDA with its increased risk ranging from 3.53 to 16.16.7 Molecular 
pathology has shown that most PDA cases begin in the context of 
inflammation, and are derived from acinar cells.8 Communication 
between the acinar cells and the inflammatory milieu converts them 
into ductal-like cells, then progresses into a pancreatic intraepithe-
lial neoplasia sequence, and finally ends up with PDA.8 Accredited 
reports support that inflammation could accelerate accumulations 
of genetic events within pancreatic cells, and sequentially accel-
erate the process of pancreatic carcinogenesis. However, though 
several genes and molecular pathways have been validated to be 
involved in this process, targeted therapy against these genes have 
shown little efficacy in the clinic. As a consequence, identification 
and validation of causative genes and molecular pathways under-
lying PDA progression are critical for the rational development of 
effective strategies for diagnosis and intervention.4,9

The Positive Feedback Loop Between Inflammation and 
Mutant KRAS Genes Promotes Malignant Transformation  
in Chronic Pancreatitis

Fan Yang1#, Lei Li2# and Xiang-Yu Kong1*

1Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, Shanghai, China; 2Digestive Endoscopy Center, Shanghai Tenth 
People’s Hospital, Tongji University School of Medicine, Shanghai, China

Received: June 27, 2022  |  Revised: October 10, 2022  |  Accepted: October 19, 2022  |  Published: November 16, 2022

Abstract
Pancreatic cancer (PC) is one of the most dismal diseases with a five-year survival rate of only 6%. Such poor prognosis is at-
tributed to both a lack of early detection methods and its intrinsic resistance to cytotoxic agents and radiotherapy. Identifying 
driving events in the initial stage is of great significance for curable pancreatic ductal adenocarcinoma (PDA) detection and 
effective targeted therapy. Furthermore, Kirsten rat sarcoma viral oncogene (KRAS) plays a critical role in the initiation and 
maintenance of pancreatic tumors, thus contributing to the conversion of anti-tumor inflammation to pro-tumor inflammation. 
Both the KRAS mutation and inflammation are concurrent in the initial stage of PDA, and they compose a positive feedback 
loop to enhance each other’s activity. This positive feedback loop generates a harsh environment, which helps pancreatic cells 
maintain the stemness phenotype, accelerates cell turnover rate, increases genome instability, and hence elevates the incidence 
of PDA formation.

Keywords: Pancreatic cancer; KRAS; Inflammation; Chronic pancreatitis.
Abbreviations: CP, chronic pancreatitis; KRAS, Kirsten rat sarcoma viral oncogene; 
MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB; PanIN, pancre-
atic intraepithelial neoplasia; PDA, pancreatic ductal adenocarcinoma; PI3K, phos-
phoinositide 3-Kinase; STAT, signal transducer and activator of transcription; TME, 
tumor microenvironment.
*Correspondence to: Xiang-Yu Kong, Department of Gastroenterology, Changhai 
Hospital, Naval Military Medical University, Shanghai 200433, China. ORCID: htt-
ps://orcid.org/0000-0001-7515-2613. Tel: +86 21-31161359, Fax: +86 21-55621735, 
E-mail: xiangyukong185@hotmail.com
#Contributed equally to this work.
How to cite this article: Yang F, Li L, Kong XY. The Positive Feedback Loop Be-
tween Inflammation and Mutant KRAS Genes Promotes Malignant Transforma-
tion in Chronic Pancreatitis. Cancer Screen Prev 2022;1(1):39–46. doi: 10.14218/
CSP.2022.00012.

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.14218/CSP.2022.00012
https://crossmark.crossref.org/dialog/?doi=10.14218/CSP.2022.00012&domain=pdf&date_stamp=2022-11-10
https://orcid.org/0000-0001-7515-2613
https://orcid.org/0000-0001-7515-2613
https://orcid.org/0000-0001-7515-2613
mailto:xiangyukong185@hotmail.com


DOI: 10.14218/CSP.2022.00012  |  Volume 1 Issue 1, December 202240

Yang F. et al: Positive feedback loop promotes CP to PDACancer Screen Prev

Identifying and dissecting driving events in the initial stages of 
PDA is critically important for PDA research
Based on the clonal relationship between a primary tumor and me-
tastasis, a previous study indicated that this needed an average of 
11.7 years to transform the initiating mutation into the parental, 
non-metastatic founder cell, and an average of 6.8 years was re-
quired for the acquisition of the metastatic ability; nevertheless, the 
patients died on average two years thereafter. These data defined 
a broad time window of opportunity for early detection to prevent 
deaths from metastatic disease.10 However, most PDA cases were 
diagnosed at an advanced stage (Fig. 1) with a five-year survival 
rate of less than 3%. In addition, targeted therapy in these patients 
showed only marginal effects. Furthermore, recent studies have 
stressed the importance of studying the genetic and immune mi-
croenvironmental alterations occurring in the early stages. There-
fore, the identification of genes and immune pathways involved in 
early-stage PDA formation would not only enable us to develop 
novel early detection strategies, but also help to better understand 
the primary causal factors for PDA and thus provide potential tar-
gets for new therapeutic modalities.

Chronic inflammation is a hallmark characteristic for PDA

Chronic inflammation is critically important in PDA carcino-
genesis
The possible links between inflammation and PDA could be read-
ily deduced from the widespread presence of inflammatory cells 
in the PDA mass. As such, now clear evidence has been obtained 
that inflammation plays a critical role in pancreatic tumorigenesis. 
Moreover, epidemiological studies have shown that chronic inflam-
mation could significantly elevate the incidence of PDA,7,11 and 
in hereditary pancreatitis, which begins at a young age (about 10 
years old), the cumulative rate of pancreatic cancer diagnosis could 

reach 22.8% at 70 years.12 Therefore, genetic mouse models helped 
us clearly define the critical role that inflammation plays in PDA 
tumorigenesis. For example, chronic pancreatitis could induce aci-
nar-to-ductal metaplasia (ADM), which has been well established as 
an important precancerous lesion during PDA formation. Likewise, 
acinar cells and insulin-expressing endocrine cells in adult mice be-
come refractory to K-RAS2V-induced PanIN and PDA unless they 
are exposed to chronic pancreatitis.13,14 The vast majority (90%) of 
PDA are linked to somatic mutations and environmental factors.15 
Many environmental risk factors, including tobacco smoke,16 obe-
sity,17 and even old age,18 exert an array of pro-tumorigenic signals 
through inflammatory mechanisms. In certain cases, inflammation 
could diminish the beneficial effects of the therapy.19 Additionally, 
the incidence and mortality of many cancers are reduced when using 
non-steroidal anti-inflammatory drugs, such as aspirin on nonspe-
cifically suppressed inflammation.20,21 Regular aspirin use has been 
associated with a reduced pancreatic cancer risk among participants 
with diabetes.22 Thus, all this evidence supports the critical role that 
inflammation plays in PDA.

Possible mechanisms involved in chronic inflammation to can-
cer progression
Several lines of evidence support the roles that inflammation plays 
in carcinogenesis. Firstly, inflammation could induce the production 
of cellular mutations, directly or indirectly. At the sites of inflamma-
tion and infections, activated inflammatory cells like macrophages 
and neutrophils could generate reactive molecules into the micro-
environment, e.g., reactive oxygen species (ROS) and reactive ni-
trogen intermediates (RNI). All these molecules would be cytotoxic 
and capable of inducing DNA damage and genomic instability in 
the pancreatic cells.23 Chronic inflammation triggering tissue dam-
age could also weaken the barrier function and expose the stem cell 
compartment to environmental carcinogens or bring stem cells to a 
close proximity of active inflammatory cells producing genotoxic 

Fig. 1. Natural course for the development of PDA. It takes decades to fully develop into a PDA. However, most PDA cases are diagnosed at an advanced 
stage (time after the yellow dashed line). The targeted therapy against these patients showed marginal effects. Recent studies stressed the importance of 
studying the genetic alterations that had occurred in early stages. PDA, pancreatic ductal adenocarcinoma.
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compounds (Fig. 2).19 Secondly, inflammation could accelerate mu-
tation accumulation in the pancreatic cells. Genome instability is the 
critical characteristic of the cancer cells enabling other hallmarks 
in cancer development. In normal cells, the genome maintenance 
systems could detect and resolve the defects in the DNA and ensure 
the rates of spontaneous mutations would be extremely low during 
each cell generation.24 In the setting of chronic inflammation, the 
cell turnover rate would be greatly accelerated, which would confer 
increased susceptibility to DNA damage. Thirdly, as PDA is an aged 
disease and it would take more than one decade to form a PDA, 
sequentially occurred somatic mutations would accumulate within a 
subset of long-lived stem cells with a self-renewal property.25 Many 
downstream effectors of inflammation, such as nuclear factor-κB 
(NF-kB)26,27 and signal transducer and activator of transcription 3 
(STAT3),28 are closely associated with a self-renewal phenotype of 
the stem cells, which would protect them from being eliminated be-
fore the next mutation acts. Last but not least, inflammation could 
help sustain the malignancy of the transformed cells by supplying 
bioactive molecules to the microenvironment, including growth fac-
tors that would sustain proliferative signaling, survival factors that 
limit cell death, invasion, and inductive signals that would lead to 
the activation of epithelial-mesenchymal transition (EMT) and other 
hallmark-facilitating programs.29,30 These signaling factors would 
act on a mutational basis to promote further transformation of pre-
cancerous lesions to cancer, metastasis, and the spread of cancer. It 
has been shown that in order for the early pancreatic intraepithelial 
neoplasia (PanIN) lesions to develop to PDA in Kirsten rat sarcoma 
viral oncogene (KRAS) mutated mice, activation of the STAT3 path-

way by interleukin 6 (IL6) would be required.31 A study showed 
that the ablation of the IkappaB kinase β (IKKβ) led to a reduction 
in tumor growth in a model of colitis-associated cancer.32 Preopera-
tive stimulation of the resolution of inflammation or inflammation 
blockade responses resulted in poor colonization and eradicated the 
micro-metastases.33

Inflammation alone is not sufficient to induce PDA formation
A study of mouse models of chronic inflammation of the pancreas 
found that mice lacking tumor protein P53 (TP53) developed pan-
creatic cancer, while TP53 wild-type mice did not, thus suggest-
ing that inflammation alone was not sufficient to cause pancreatic 
cancer.34 As previously mentioned, the development of pancreatic 
cancer would require a long course, in which multiple sequential 
steps would result in the accumulation of multiple random “hits” 
to the pancreatic cell DNA from specific types of environmental 
factors, e.g., inflammation. One strong evidence for this concept 
comes from hereditary pancreatitis (HP), an autosomal dominant 
genetic disorder with long-lasting pancreatitis. Although pancre-
atic inflammation in HP begins at a median age of 10 years, the 
marked increase in the incidence of PDA does not occur until the 
sixth decade of life.12,35 Furthermore, the risk for PDA does not 
correlate with the severity of the inflammation and fibrosis. As a 
consequence, all these observations would suggest that the high 
risk for PDA in the general population would represent a combi-
nation of existing pathogenic cancer gene variants plus environ-
mental factors, whereas inflammation itself would only act as a 
promoter, but not a cell fate determinant in PDA formation.36

Fig. 2. Inflammation could induce the production of cellular mutations, directly or indirectly. Activated inflammatory cells could generate DNA damage 
factors, such as reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI) into the microenvironment. Furthermore, chronic inflammation 
triggering tissue damage could weaken the barrier function and expose the stem cell compartment to environmental carcinogens or bring stem cells to a 
close proximity of active inflammatory cells producing genotoxic compounds. RNI, reactive nitrogen intermediates; ROS, reactive oxygen species.
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Another important reason for the inflammation’s insufficiency 
in inducing PDA would come from the theory that the ever-alert 
immune system could constantly monitor the cells and tissues. In 
normal cells, the anti-tumorigenic function of immunity would 
exert immunosurveillance and immunological sculpting of tumor 
heterogeneity. Such immune surveillance could recognize and 
eliminate the vast majority of incipient cancer cells and thus nas-
cent tumors. Studies have also shown that people with a personal 
history of allergies have been known to have a protective effect 
against pancreatic cancer. Individuals with allergies have a de-
creased risk of cancer and an increased survival rate compared to 
those without allergies.37 This could explain why striking increases 
of certain cancers occur in immunocompromised individuals.38,39 
However, with the accumulation of the mutation in the tumor mi-
croenvironment (TME), cell death and microbial signals would 
altogether feed into a feed-forward loop of inflammation-induced 
signaling and inflammatory cell recruitment. Hence, the sterilizing 
immunity would not remove the mutation, thus resulting in cancer-
promoting inflammation.19 Such immune escape is a hallmark of 
all cancer types, and cancer cells must well evade immune destruc-
tion by disabling the components of the immune system that have 
been dispatched to eliminate them, so to grow successfully into a 
solid tumor mass.24,40 These two immune models existing in dif-
ferent microenvironments would also confirm that inflammation 
alone would not be sufficient to induce PDA formation.

KRAS mutation is critically important for PDA initiation

KRAS mutation is the initial and ubiquitous event in pancreatic 
carcinogenesis
Genome instability and associated genetic diversity are the key 
characteristics of tumors underlying those so-called “hallmarks of 
cancer”.24 Substantial efforts have been devoted to determine the 
genetic mutations of PDA, and hundreds of changes of gene expres-
sion have been identified compared with normal pancreatic cells.41 
Though a small group (2–10%) of PDAs seem to be associated with 
hereditary factors, most are associated with high-frequency somatic 
mutations in a subset of genes, including KRAS, cyclin-dependent 
kinase inhibitor 2A (CDKN2A), TP53, and SMA- and MAD-related 
protein 4 (SMAD4).42 Of note, KRAS mutation is nearly universal 
(>95%) in human PDA. Furthermore, PDA is associated with non-
invasive, preneoplastic lesions that are thought to be precursors to 
the disease. PanIN is the most common and most widely studied pu-
tative precursor. A sequential transformation model, from PanIN-1, 
PanIN-2, PanIN-3, until PDA, has been well established for PDA, 
and numerous genetic alterations have also been documented in dif-
ferent stages. In PanIN-1, mutated KRAS was frequently detected 
(estimated to be over 36%43,44), whereas the other PDA associated 
mutations, e.g., TP53 or SMAD4, remained intact. Owing to its near 
universal frequency in PDA, the mutation of KRAS was proposed 
as the initiating genetic lesion in PDA. Genetic models holding con-
stitutively active KRAS helped us dissect the key role that mutant 
KRAS plays in PDA progression.

Genetic models developed in the context of oncogenic KRAS 
provide important tools in PDA studies
Hingorani et al. first developed the conditional KRAS-driven PDA 
mouse model that recapitulated the progression observed in hu-
mans.45 From then on, almost all PDA genetic models were gener-
ated on the basis of cre-mediated KRAS mutation, e.g., KC (Pdx1-
Cre; LSL-KRASG12D or Ptf1a-Cre; LSL-KRASG12D) and KPC 

(most commonly Pdx1-Cre; LSLKRASG12D; LSL-Trp53R172H or 
Ptf1a-Cre; LSL-KRASG12D; LSLTrp53R172H) mouse models. Em-
ploying these models, researchers explored the origination of PDA 
by cell lineage tracing, dissected unraveled mechanisms by cross-
breeding with other genetic mutation models, and evaluated the 
therapeutic efficacy of certain anti-cancer agents to PDAs. Neither 
the presence of inflammation, nor the loss of tumor suppressor 
genes would be sufficient to initiate PDA in the absence of onco-
genic KRAS, which would highlight the unique role that KRAS 
would play in the onset of PDA.46

KRAS plays a central role in the initiation and maintenance of 
PDA by activating downstream effector pathways
Activated KRAS mutants initiate numerous signaling pathways. 
All of these pathways contribute to the oncogenic and proliferative 
power of KRAS, including the mitogen-activated protein kinase 
(MAPK) pathway, phosphoinositide 3-Kinase (PI3K) pathway, Ras-
like (RAL)A–RALB pathway, the p38 mitogen-activated protein 
kinases (p38-MAPKs) pathway, Jun N-terminal kinase (JNK) path-
way, and NF-κB pathway. MAPK signaling promotes the formation 
of PanINs by enabling the dedifferentiation of acinar cells into duct-
like cells that are susceptible to transformation.47 Activation of the 
PI3K family would lead to the activation of phosphatidyl inositol 
triphosphate and to the downstream activation of the Ak strain trans-
forming (AKT) and mammalian target of rapamycin (mTOR) mol-
ecules. This pathway has been shown to be upregulated in PDA.48 In 
pancreatic cancer, RALA promotes tumor initiation, whereas RALB 
is essential for invasion and metastasis.49 The p38-MAPKs pathway 
promotes invasive abilities of pancreatic tumors,50 while the JNK 
pathway promotes pancreatic tumor formation and cancer stem cell 
maintenance.51 The NF-κB pathway modulates pancreatic cancer 
cell malignancy and tumor growth through cell cycle signaling.52 In 
addition to these classic pathways, many other proteins containing 
putative KRAS- association or KRAS-binding domains have been 
described, including the SARC, STAT3, cyclooxygenase-2 (COX2), 
and early growth response 1 (EGR1) pathways.53

Oncogenic KRAS alone might not be sufficient to transform a 
cell
Though KRAS is indispensable for PDA formation, numerous 
studies have reported that healthy humans carry oncogenic KRAS 
in different organs, including the pancreas,54 colon,55 and lungs,56 
at rates far exceeding the rates of cancer development.46 Further-
more, mice that express oncogenic KRAS, either in the whole body 
or in specific organs, develop cancers from only a small fraction 
of the cells that contain the oncogenic KRAS.57,58 Mouse models 
showed that the oncogenic KRAS remained locked in an “Off” 
state but could be readily activated by upstream stimulants to lead 
to prolonged strong Ras activity.59 Consequently, a threshold level 
of KRAS activity might be essential to initiate the carcinogene-
sis process.60,61 Therefore, these results indicated that oncogenic 
KRAS alone was not sufficient to transform a cell, and other ge-
netic/epigenetic factors would be required to elevate the activity 
level of mutant KRAS to initiate carcinogenesis.

KRAS-inflammation feed-forward loop plays important roles 
in PDA initiation

Oncogenic KRAS could regulate the inflammatory environment 
of PDA
A list of inflammatory signals has been validated to be down-
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stream effectors of KRAS,62 e.g., COX-2, STAT3, and NF-κB, 
which have indicated that oncogenic KRAS itself is closely as-
sociated with inflammatory pathways. During the earliest stage of 
the PanIN formation, the lesions would accumulate proliferating 
cells of mesenchymal origin that might comprise fibroblasts and 
pancreatic stellate cells (PSCs). In a mouse model of pancreatic 
disease harboring elevated KRAS activity in the acinar cells, the 
number of activated PSCs greatly increased following the induc-
tion of pancreatitis,63 which showed that even low levels of KRAS 
activity could generate signals that would influence the microen-
vironment. In addition KRAS would maintain the stroma activated 
by regulating the production of factors, such as sonic hedgehog,64 
IL6,31 and prostaglandin E.65 When KRAS was inactivated in low-
grade PanINs, the activated fibroblasts that populated the stroma 
stopped expressing markers of activation, exited the cell cycle, and 
were eliminated from the pancreas via an unknown mechanism.46 
Inactivation of KRAS also led to resolution of the chronic inflam-
mation associated with PDA. The immune cells that infiltrated the 
pancreas could also be regulated by KRAS. In mouse models of 
PDA, tumor cells carrying mutant KRAS could secrete cytokines, 
such as the granulocyte-macrophage colony-stimulating factor 
(GM-CSF) into the microenvironment, which would promote the 
infiltration of myeloid-derived suppressor cells that would inhibit 
anti-tumor immune responses.66 As such, oncogenic KRAS could 
sustain the “smoldering inflammation” mostly in a paracrine man-
ner.

Inflammation could enhance KRAS activity
Though KRAS mutation would be indispensable in pancreatic car-
cinogenesis, oncogenic KRAS would not be constitutively active, 
and the activity of KRAS would surmount a threshold to ensure its 
transformation ability toward the pancreatic cells. Hence, the PDA 
associated microenvironment would be infiltrated with different 
inflammatory cells, which could generate various chemokines, cy-
tokines, and growth factors, such as IL6, IL8, IL17, tumor necrosis 
factor-alpha (TNF-α), microphage inhibitory factor (MIF), IL1β, 
transforming growth factor-beta (TGF-β), and IL10.67 All these in-
flammatory mediators would act on their downstream effectors in 
the pancreatic cells and activate those dominant oncogenes, e.g., 
KRAS through a paracrine manner. There would also be two core 
effectors, NF-κB and STAT3, connecting the inflammation and 
PDA. NF-kB is a nuclear transcription factor that regulates the ex-
pression of a large number of genes in response to various stimuli. 
NF-kB is known to be constitutively activated in most PDA pa-
tients.68 Once stressed by inflammatory stimuli, NF-kB in pancre-
atic cells would translocate into the nucleus, and mechanistically 
induce the expression of a set of downstream genes and amplify 
the KRAS activity.69 Like NF-kB, STAT3 would also be ubiqui-
tously activated in most PDA cases. Activation of STAT3 could 
transduce upstream signals, e.g., IL6 and IL17, into the pancreatic 
cells and complexes with other transcription factors to sustain the 
KRAS activity.70 In KRAS-driven mouse models, STAT3 was a 
critical component of spontaneous and pancreatitis-accelerated 
PDA precursor formation and supported cell proliferation and 
metaplasia-associated inflammation (Fig. 3).

The Model of “KRAS-inflammation positive feed-back loop” 
in PDA initiation
As KRAS mutation and inflammation are concurrent in the initial 
stage of PDA, it would be quite logical to assume that a “KRAS-
inflammation positive feed-back loop” exists. The “KRAS-inflam-

mation positive feedback loop” would be extremely important in 
sustaining the KRAS activity at a relatively high level and enhanc-
ing its transformation ability. Oncogenic KRAS in transformed 
PDA cells would drive the secretion of inflammatory cytokines/
chemokine, thus causing the production of more cytokines and 
chemokines in the TME.46 These secreted factors would engage 
with the inflammatory receptors on the PDA cells, consequently 
driving a network of signaling pathways that would synergize with 
the oncogenic KRAS signaling in propelling the various malig-
nant feats of PDA. Some classical inflammatory signaling path-
ways would include NF-kB, Janus kinase/signal transducers and 
activators of transcription (JAK-STAT), toll-like receptor (TLR) 
pathways, cyclic GMP-AMP synthase (cGAS)/stimulator of in-
terferon genes (STING), and MAPK. Tumor progression locus 
2 (TPL2, also known as MAP3K8 or COT) is a serine-threonine 
protein kinase that mediates the IL1 receptor (IL1R), TLR, and 
TNF-dependent MAPK and NF-κB activation.71 In PDA cells, 
TPL2 is activated via a KRAS-MAPK driven IL1β autocrine sign-
aling loop that engages IL1R, IRAK4, and IKKβ. In this setting, 
the inhibition of TPL2 would suppress MEK-ERK, p-105, and p65 
NF-kB activation, hence leading to enhanced survival and chemo-
resistance.72

Fig. 3. The model of the “KRAS-inflammation positive feedback loop” 
in the PDA initiation. Inflammatory mediators would act on their down-
stream effectors in the pancreatic cells and activate those dominant onco-
genes, e.g., KRAS, through a paracrine manner. NF-κB and STAT3 would be 
two core effectors connecting the inflammation and PDA. Once stressed 
by the inflammatory stimuli, they would mechanistically induce the ex-
pression of a set of downstream genes and amplify the KRAS activity. 
Then, they could also be induced as the downstream effectors of KRAS. 
DC, dendritic cells; IL, interleukin; KRAS, Kirsten rat sarcoma viral onco-
gene; MIF, microphage inhibitory factor; NF-κB, nuclear factor-κB; PDA, 
pancreatic ductal adenocarcinoma; STAT, signal transducer and activators 
of transcription; TGF-β, transforming growth factor-beta; Th, helper T cell; 
TNF-α, tumor necrosis factor-alpha; Treg, regulatory T cells.
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Furthermore, oncogenic KRAS has slower kinetics of return 
to its guanosine diphosphate-bound status than non-oncogenic 
forms, which would provide extra time for activated KRAS to re-
ceive enough signals from the inflammation stimuli, and to finally 
generate a feedback loop that would sustain its activity. Reagents 
which inhibit inflammation, such as the COX2 inhibitor celecoxib, 
could block the feed-forward loop and prevent the induction of 
PDA in models with endogenous oncogenic KRAS.73-75 This mod-
el would also be supported by epidemiological reports that certain 
anti-inflammatory agents would be associated with a lower risk in 
the general population’s PDA development.

Conclusions
The “KRAS-inflammation feed-forward loop” model plays an im-
portant role in maintaining the activity of KRAS and initiation of 
PDA. However, pancreatic cells harboring this feed-forward loop 
would not be destined to become cancer cells. Thus, chronic pan-
creatitis (CP) would be the best model to evaluate the magnitude 
that the role of our proposed model would play in PDA initiation. 
It has also been confirmed that the incident of PDA in CP patients 
was obviously higher than in the general population.11 Moreover, 
molecular research has indicated that more than one third of the 
CP cases harbor KRAS mutations, whereas the incidence of PDA 
in CP was less than 4% in 20 years, which means as least 20% 
of CP cases. Though they held oncogenic KRAS cells in a harsh 
inflammatory milieu, this would not progress into PDA throughout 
their lifespan. Just as mentioned before, the loop could be blocked 
by immune surveillance in a normal situation. This would need 
the accumulation of time and other genetic promotors for the loop 
to maintain and eventually show a cascade amplification effect. 
Other important mechanisms would need to be involved in the 
CP to PDA progression. This would need more research about the 
other driver factors, as well as those noncoding RNAs that could 
play causal roles accompanying the “KRAS-inflammation feed-
forward loop” model.
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